Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

INVESTIGATION TECHNIQUES - MONITORING: THE CASE OF THE DAVID TOWER

Speaker: Dr. Eng. Filippo Lorenzoni

INGEGNERIA CIVILE, EDILE E AMBIENTALE CIVIL, ARCHITECTURAL AND ENVIRONMENTAL ENGINEERING

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

SHM: INTRODUCTION

- Needs for an effective seismic protection and vulnerability reduction of infrastructures, strategic structures and Cultural Heritage (CH) buildings;
- Cultural Heritage buildings are constantly at risk, as demonstrated by recent earthquakes;
- Historic buildings, due to their structural features, construction techniques and used materials, are particularly vulnerable to earthquake actions;

STRUCTURAL HEALTH MONITORING (SHM) a measure of passive mitigation of earthquake effects

- Continuous or short/medium-term controls of quantities related to the structural behavior and connected to the evaluation of their evolution with the passing of time;
- Large number of applications in the field of civil engineering such as: design, damage detection and assessment, maintenance and retrofitting of existing structures, structural control during earthquakes (using semi-active systems).

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

SHM: INTRODUCTION

On-site testing and monitoring can be considered key activities for a conscious knowledge-based approach in the conservation of the architectural heritage.

STATIC MONITORING

- Measurement of static time-dependent parameters that vary slowly
- Controls of: crack pattern, activation of collapse mechanisms, state of stress and strain, variation of environmental parameters, ...
- Local controls and damage identification

DYNAMIC MONITORING

- Measurements of ambient vibrations or exceptional events (e.g. earthquakes)
- Identification of dynamic time-dependent parameters (modal parameters)
- Continuous, trigger-based or punctual
- Global controls and damage identification

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

SHM: APPLICATION TO CH BUILDINGS

Knowledge-based methodologies for the study of heritage buildings are based on the exploitation and integration of different approaches including inspections, monitoring and structural analysis

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע"ד

SHM: APPLICATION TO CH BUILDINGS

ROLE OF MONITORING

- INVESTIGATION PHASE
- INTERVENTION PHASE
- EVALUATION PHASE
- MAINTENANCE PHASE

i. INVESTIGATION

- Dynamic characterization
- Model updating
- Damage Identification
- Emergency actions

ii. EXECUTION

- Structural controls before, during and after the execution
- Incremental approach and sequential interventions

iii. Evaluation

- Assessment of interventions' influence on the structural response
- Assessment of interventions' effectiveness
- Evaluation of possible upgrading solutions

IV. MAINTENANCE

- Long-term monitoring program
- Assessment of long-term effectivness and durability of interventions
- Quality control plans, maintenence works and corrective measures

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

SHM: APPLICATION TO CH BUILDINGS

STRENGTHENING NEEDS AND VULNERABILITY ASSESSMENT

INCREASE THE KNOWLEDGE ON THE STRUCTURAL BEHAVIOR USING SHM TO ASSESS STRENGTHENING NEEDS AND AVOID THE EXECUTION OF UNNECESSARY INTERVENTIONS

INCREMENTAL APPROACH/INTERVENTION ASSESSMENT

APPLICATION OF AN INCREMENTAL APPROACH TO THE EXECUTION OF STRENGTHENING INTERVENTIONS USING SHM BEFORE, DURING AND AFTER THE IMPLEMENTATION, VALIDATING EVENTUALLY THEIR EFFECTIVENESS

POST EARTHQUAKE CONTROLS

Post-earthquake controls on severely damaged buildings using SHM to control the evolution of damage and verify the effectiveness of provisional strengthening measures

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

SHM: APPLICATION TO CH BUILDINGS

MONITORING SYSTEMS INSTALLED AND MANAGED BY UNIVERSITY OF PADOVA

ARENA OF VERONA (VR)					
INSTALLATION	December 2011				
PERIOD	December 2011				
	Static/Dynamic				
SHMTTPOLOGI	system				
	Alternative to the				
PURPUSE UP	execution of				
MONTIORING	interventions				

9	CANSIGNORIO STONE TOMB (VR)						
I 	INSTALLATION	December 2006					
	PERIOD	December 2000					
		Static/Dynamic					
	SHMITPOLOGI	system					
		Structural controls					
	MONITODINC	before, during and					
	MONITORING	after interventions					

SCROVEGNI CHAPEL (PD)				
INSTALLATION	October 2012			
PERIOD	October 2013			
	Static/Dynamic			
SHM TTPOLOGT	system			
	Vulnerability			
MONITORING	assessment/state			
	of damage contro			

S. SOFIA CHURCH (PD)				
	1999 (1st			
INSTALLATION	installation); 2008			
PERIOD	(1st upgrade);			
	2010 (2nd upgrade)			
SHM	Static/Dynamic			
TYPOLOGY	system			
	Structural controls			
PURPUSE UF	before, during and			
MONITORING	often interventions			

Seismic Risk Preparedness and Mitigation of Culture Heritage Sites מוכנות והיערכות לסיכוני רעידות אדמה באתרי מורשת תרבות Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

MONITORING SYSTEMS INSTALLED AND MANAGED BY UNIVERSITY OF PADOVA

L'AQUILA CASE STUDIES: POST-EARTHQUAKE CONTROLS

CIVIC TOWER (AQ)					
INSTALLATION	1h. 2010				
PERIOD	July 2010				
SHM TYPOLOGY	Static/Dynamic system				
PURPOSE OF	Dect carthquake controls				
MONITORING	Post-eartiquake controls				

S.BIAGIO/S.GIUSEPPE CHURCH(AQ)				
INSTALLATION	December 2010			
PERIOD	December 2010			
SHM TYPOLOGY	Static/Dynamic system			
PURPOSE OF	Death couth surelysis as a trade			
MONITORING	Post-eartinguake controls			

SPANISH FORTRESS (AQ)					
INSTALLATION	December 2009				
PERIOD					
SHM TYPOLOGY	Dynamic system				
PURPOSE OF	Deat easthquake controle				
MONITORING	Post-eartinguake controls				

S.AGOSTINO CHURCH (AQ)				
NSTALLATION	July 2010			
PERIOD	July 2010			
SHM TYPOLOGY	Static/Dynamic system			
PURPOSE OF	Dest easthquake controls			
MONITORING	Post-eartiquake controis			

S.MARCO CHURCH (AQ)				
INSTALLATION	August 2000			
PERIOD	August 2009			
SHM TYPOLOGY	Static/Dynamic system			
PURPOSE OF	Death coutly such as a such as			
MONITORING	Post-eartiquake controls			

S.SILVESTRO CHURCH (AQ)					
INSTALLATION	1.1.4 2010				
PERIOD	July 2010				
SHM TYPOLOGY	Static/Dynamic system				
PURPOSE OF	Deat another and a control of				
MONITORING	Post-eartiquake controis				

Seismic Risk Preparedness and Mitigation of Culture Heritage Sites מוכנות והיערכות לסיכוני רעידות אדמה באתרי מורשת תרבות Israel, Jerusalem, 19-20 January 2014

i. Arena of Verona: SHM as an alternative to strengthening

GEOMETRIC AND STRUCTURAL FEATURES

- Ellipse with four focuses (152.43m x 123.23m)
- Two annular galleries and 73 radial masonry walls
- Inner masonry: multi-leaf with inner core
- 'Wing Ala': freestanding structure remaining four arches of the outer ring, h=30.75 m

HISTORICAL NOTES - PAST INTERVENTIONS

- I century: construction of the amphitheater
- XII century: collapse of the outer ring
- 1939: First intervention on the 'Wing': buttresses construction before WWII
- 1953: Second intervention on the 'Wing' designed by Eng. Morandi: insertion of posttensioned steel cables along the pillars

Seismic Risk Preparedness and Mitigation of Culture Heritage Sites מוכנות והיערכות לסיכוני רעידות אדמה באתרי מורשת תרבות Israel, Jerusalem, 19-20 January 2014

ARENA OF VERONA: PRELIMINARY INSPECTIONS

a. VISUAL INSPECTIONS - CRACK PATTERN SURVEY:

- Choose the optimal position of static sensors
- Identify principal damage and crack patterns
- Control local cracks or entire macroelements

MAIN STRUCTURAL PROBLEMS:

- Inner gallery's barrel vault
- Vaulted niches at the 1st level ('arcovoli')
- Outer leaf of the perimeter stone wall
- The 'wing': most vulnerable structural element

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

b. OPERATIONAL MODAL ANALYSIS (OMA):

- Select optimal layout of dynamic system
- Identification of the dynamic behaviour of the 'Wing' and model updating
- Comparison of results using different OMA/EMA techniques
- SF 100 Hz; 131'072 points; record lenght: 21'51" sec
- System identification: decimation; segment length 2048 points, 66.67% overlap; selected methods: FDD and EFDD

		AVT - Oct 2011 FVT - 1996		AVT vs. FVT				
MO DE	FDD EFDD		мас			Average e	ərror [%]	
	<i>f</i> [Hz]	f [Hz]	ξ [%]	MAC	<i>f</i> [Hz]	ξ [%]	f	ξ
1	1,93	1,92	1,36	1	1,92	1,4	0	2,94
2	2,64	2,65	1,12	0,99	2 <mark>,</mark> 61	1,3	1,51	16,07
3	5,08	5,08	1,07	0,99	4,83	1,8	4,92	<mark>68,</mark> 22
4	5,88	5,98	3,86	0,99	5,87	6,9	1,84	78,76
5	7,30	7,29	2,07	0,99	7,10	2,3	2,61	11,11
6	9,30	9,30	0,43	0,99	8,62	1,1	7,31	155,81
7	10,94	10,92	1,06	0,99	10,65	2,6	2,47	145,28

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

ARENA OF VERONA: THE MONITORING SYSTEM

DYNAMIC MONITORING 16 SINGLE-AXIS ACCELEROMETERS

Sensitivity: 1019.4 mV/(m/s²) Frequency range (\pm 10 %): 0.1÷2000 Hz Resolution(da 10,000 Hz): 0.00008 m/s² Operating temperature : -45÷82 °C

STATIC MONITORING 20 DISPLACEMENT TRANSDUCERS

Voltage: 0÷10 V Measurement range: 10 cm Hysteresis: < 0.01 mm Operating temperature:-30÷100 °C

ENVIRONMENTAL MONITORING 4 TEMPERATURE/RH

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

ARENA OF VERONA: THE MONITORING SYSTEM

• 8 PZ inner gallery

12 PZ «Arcovoli» of the first level

DYNAMIC MONITORING 16 SINGLE-AXIS ACCELEROMETERS

Sensitivity: 1019.4 mV/(m/s²) Frequency range (\pm 10 %): 0.1÷2000 Hz Resolution(da 10,000 Hz): 0.00008 m/s² Operating temperature : -45÷82 °C

STATIC MONITORING 20 DISPLACEMENT TRANSDUCERS

VOLTAGE: 0÷10 V MEASUREMENT RANGE: 10 CM HYSTERESIS: < 0.01 MM OPERATING TEMPERATURE:-30÷100 °C

ENVIRONMENTAL MONITORING 4 TEMPERATURE/RH

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

ARENA OF VERONA: THE MONITORING SYSTEM

DYNAMIC MONITORING 16 SINGLE-AXIS ACCELEROMETERS

Sensitivity: 1019.4 mV/(m/s²) Frequency range (\pm 10 %): 0.1÷2000 Hz Resolution(da 10,000 Hz): 0.00008 m/s² Operating temperature : -45÷82 °C

STATIC MONITORING 20 DISPLACEMENT TRANSDUCERS

Voltage: 0÷10 V Measurement range: 10 cm Hysteresis: < 0.01 mm Operating temperature:-30÷100 °C

ENVIRONMENTAL MONITORING 4 TEMPERATURE/RH

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

ARENA OF VERONA: THE MONITORING SYSTEM

DYNAMIC MONITORING 16 SINGLE-AXIS ACCELEROMETERS

Sensitivity: 1019.4 mV/(m/s²) Frequency range (\pm 10 %): 0.1÷2000 Hz Resolution(da 10,000 Hz): 0.00008 m/s² Operating temperature : -45÷82 °C

STATIC MONITORING 20 DISPLACEMENT TRANSDUCERS

Voltage: 0÷10 V Measurement range: 10 cm Hysteresis: < 0.01 mm Operating temperature:-30÷100 °C

ENVIRONMENTAL MONITORING 4 TEMPERATURE/RH

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

ARENA OF VERONA: STATIC MONITORING RESULTS (2 YEARS)

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

ARENA OF VERONA - ALA: DYNAMIC MONITORING RESULTS (2 YEARS)

STATISTICAL RESULTS (FREQUENCIES - DAMPING - MAC)

Mode	f _{mean} [Hz]	f _{std} [Hz]	ξ _{mean} [%]	ξ _{std} [%]	MAC _{mean} [%]	MAC _{min} [%]
1	1,902	0,051	0,977	0,359	90,66	70,30
2	2,621	0,097	0,903	0,326	89,10	70,55
3	4,888	0,240	1,037	0,226	94,15	70,98
4	6,016	0,232	5,247	1,527	96,62	74,25
5	7,091	0,253	1,933	0,772	94,25	70,11
6	9,028	0,575	0,961	0,365	86,93	70,01
7	10,555	0,384	1,119	0,229	94,91	70,03
	MODE 1 - 1,93 H	z MODE 2	- 2.84 Hz	MODE 3 - 5,08 Hz MODE 7 - 10,94 Hz	MODE 4 - 5,	88 Hz

- Natural frequencies of the Arena's wing are rather stable during the analysed monitoring period (Dec 2011 - Dec 2013)
- Relationship between frequencies and temperature:
 - $T > 5^{\circ}C \rightarrow$ frequencies are stable
 - $T < 5^{\circ}C \rightarrow$ frequencies tend to increase

Seismic Risk Preparedness and Mitigation of Culture Heritage Sites מוכנות והיערכות לסיכוני רעידות אדמה באתרי מורשת תרבות Israel, Jerusalem. 19-20 January 2014

SHM FOR MODEL UPDATING

APPLICATION TO VERONA CASE STUDIES: <u>ARENA</u>

- Model driven approach → exploit SHM and dynamic identification results to calibrate and validate reference numerical models
- Implementation of modal matching procedures
- Model updating targets: material properties, geometry, morphology, connections, boundary conditions, soil-structure interaction, damage distribution, ect.

FE MODEL OF THE ARENA'S WING

CALIBRATION PROCEDURE

- Identification of morphology and materials
- Definition of initial values of elastic mechanical properties
- Iterative variation of mechanical properties/boundary conditions within a predefined range until reaching the final calibration

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

APPLICATION TO VERONA CASE STUDIES: <u>ARENA</u>

MODEL UPDATING RESULTS

MODAL MATCHING: EXP/FEM RESULTS

MO DE	Туре	f_{EXP} [Hz]	f_{FEM} [Hz]	Average error ε [%]	$\begin{array}{c} MAC \\ (\{\psi^{\mathit{EXP}}\}, \{\psi^{\mathit{FEM}}\}) \end{array}$
1	1 st out-of-plane bend.	1,924	1,924	0,01	0,973
2	1 st torsional	2,666	2,640	1,00	0,993
3	2 nd torsional	5,103	5,122	0,36	0,984
4	2 nd out-of-plane bend.	6,086	6,054	0,53	0,936
5	3 rd torsional	7,308	7,323	0,20	0,886
6	4 th torsional	9,434	9,464	0,32	0,821
7	5 th torsional	10,970	10,944	0,24	0,973

VARIATION OF UPDATING PARAMETERS

Structural	ELASTI	C MODULL	JS [MPa]	MASS DENSITY [kg/m ³]			
element	Initial	Final	Diff. [%]	Initial	Final	Diff.[%]	
Stone I order	15000	15223	1.49	2700	2687	-0.48	
Stone II order	15000	16174	7.82	2700	2752	1.92	
Stone III order	15000	14443	-3.71	2700	2658	-1.56	
Vault	2400	2479	3.27	1800	1830	1.64	
Arches	15000	14096	-6.03	2700	2703	0.12	
Frenelli	500	477	-4.63	750	750	-0.04	
Infill	500	483	-3.48	750	757	0.92	
Stone floor	12000	11723	-2,31	2500	2509	0.36	

EXPERIMENTAL MODE SHAPES

NUMERICAL MODE SHAPES

Mode 5* (6,728 Hz) Mode 5 (7,323 Hz) Mode 6 (9,464 Hz) * in-plane bending mode not identified during AVT and dynamic monitoring Mode 7 (10,944 Hz)

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

SHM IN CASE OF EXCEPTIONAL EVENTS

APPLICATION TO VERONA CASE STUDY: ROMAN ARENA

5 Main seismic events (with several aftershoks) recorded from January to May 2012:

- 1. Prealpi Venete
- 2. Reggio Emilia province
- 3. Parma province
- 4. Emilia-Romagna: Finale Emilia
- 5. Emilia-Romagna: Medolla

Seismic	LITC	Magnitudo	Donth	GPS Coordinates		
events	UIC	Magnitude	Depth	Latitude	Longitude	
1	2012-01-24 23:54:46	4.2	10.3	45.541	10.973	
2	2012-01-25 08:06:36	4.9	33.2	44.854	10.538	
3	2012-01-27 14:53:13	5.4	60.8	44.483	10.033	
4	2012-05-20 02:03:53	5.9	6.3	44.890	11.230	
5	2012-05-29 07:00:03	5.8	10.2	44.851	11.086	

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע"ד

ANALYSIS OF GROUND MOTION RECORDS

MAIN SHOCK: 25 JANUARY 2012

Prealpi Venete (VR) 2012-01-24 23:54:46 Magnitude: 4.2 Depth 10.3 Km Distance: 11,5 Km

-47.1

Max. Acc. Base = 0,62 \text{ m/s}^2

th-m

MAIN SHOCK: 29 MAY 2012

Pianura Padana-Emiliana (MO) 2012-05-29 07:00:03 Magnitude: 5.8 Depth 10.2 Km Distance: 75 Km

Max. Acc. Base = $0,08 \text{ m/s}^2$

Max Acc. Wing = $0,98 \text{ m/s}^2$

COMPARISON: MAX. ACCELRATIONS, AMPLIFICATION FACTORS AND ELASTIC RESPONSE SPECTRA

Seismic	BASE	TOP W	TOP AMPHI	PHITHEATER		
	PGA	Max. Acc.	Amplif.	Max Acc.	Amplif.	
event	[m/s ²]	[m/s ²]	factor	[m/s ²]	factor	
25/01/2012	0,619	1,93	3,11	1,251	2,02	
29/05/2012	0,078	0,98	12,56	0,40	5,13	

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

MODAL PARAMETERS IDENTIFICATION

MAIN SHOCK: 25 JANUARY 2012

Dynamic identification of modal parameters before, during and after the seismic event

- OMA TECHNIQUES NOT RELIABLE
- INPUT IS NOT A WHITHE NOISE STOCHASTIC PROCESS
- EARTHQUAKE IS A NONSTATIONARY SIGNAL
 - Frequency spectrum of the transient INPUT BIASES MODAL PARAMETER ESTIMATION

DATA-DRIVEN REFERENCE-BASED DETERMINISTIC-STOCHASTIC SUBSPACE IDENTIFICATION (CSI/REF) METHOD

NATURAL FREQUENCIES VARIATION

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

MODAL PARAMETERS IDENTIFICATION

FULL-SCALE FORCED VIBRATI

MAIN SHOCK: 25 JANUARY 2012

Dynamic identification of modal parameters before, during and after the seismic event

OMA
TECHNIQUES
NOT RELIABLE

- INPUT IS NOT A WHITHE NOISE STOCHASTIC PROCESS
- EARTHQUAKE IS A NONSTATIONARY SIGNAL
 - FREQUENCY SPECTRUM OF THE TRANSIENT INPUT BIASES MODAL PARAMETER ESTIMATION

OMAX COMBINED OMA/EMA

DATA-DRIVEN REFERENCE-BASED DETERMINISTIC-STOCHASTIC SUBSPACE IDENTIFICATION (CSI/REF) METHOD

NATURAL FREQUENCIES VARIATION

FREQUENCY VARIATIONS											
MODE	BE [Hz]	MS [Hz]	PP [Hz]	AE [Hz]	f change (BE-MS)	f change (BE-AE)	$\underset{(\{\psi^{R\tilde{e}}\},\{\psi^{M\tilde{e}}\})}{MAC}$				
1	1,98	1,66	1,73	1,89	-16,28%	-4,44%	0,9998				
2	2,75	2,24	2,35	2,62	-18,63%	-5,11%	0,9664				
3	5,31	n.i*	4,50	4,97	1	-6,94%	1				
4	6,44	4,52	5,29	6,07	-29,77%	-6,09%	0,9933				
5	7,57	5,59	6,28	7,10	-26,15%	-6,55%	0,9372				
6	10,00	n.i.*	n.i*	9,18	1	-8,89%	1				
7	11,40	8,62	9,71	10,67	-24,34%	-6,78%	0,9581				

*not identified

DAMPING RATIO VARIATIONS										
	HODE	BE	MS	PP	AE	ξ change	ξ change			
	MODE	[%]	[%]	[%]	[%]	(BE-MS)	(BE-AE)			
	1	1.17	1.17 2.71 2		0.96	+131.47%	-22.25%			
	2	1.11	5.11	2.67	0.82	+361.43%	-35.21%			
	3	1.03	n.i*	1.30	0.96	1	-7.10%			
	4	6.44	1.97	3.75	4.87	-69.45%	-32.23%			
	5	2.81	6.64	4.38	2.30	+136.19%	-22.44%			
	6	0.95	n.i*	n.i*	0.99	1	+3.71%			
	7	1.34	3.57	1.93	1.19	+166.63%	-12.51%			

---- MODE 5

---- MODE 7

---- MODE 4

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

• FE simulation on the main shock of the 25/01/2012 earthquake

- Type of analysis: linear and non-linear dynamic
- Aims:
 - a) Compare the actual response (experimentally recorded) with the model response (numerically predicted)
 - b) Refine the calibration of the reference FE model: modification of the elastic properties and of the damping coefficients, accurately estimated during a real earthquake

DAMPING COEFFICIENT CALIBRATION

From dynamic identification during the earthquake

Reyleigh damping: C = aM + bK

a, b Reyleigh coefficients calculated on the estimated damping ratio $\boldsymbol{\xi}$

NON-LINEAR CONSTITUTIVE MODEL OF MASONRY

Material	Tensile strength f _t [MPa]	Fracture energy G _f [N/mm]	Compressive strength f _c [MPa]	Elastic Hardening E _A [MPa]
Stone blocks masonry	0,13	=0	3,00	3,00
Opus <u>coementicium</u> (vaults and arches)	0,13	*	3,00	3,00
Infill of vaults		line	ear elastic	
Stone floor	σ Λ f	line tension Gr=∞	ear elastic	
E	Ер f	compression	ť	

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

NUMERICAL SIMULATION

Seismic Risk Preparedness and Mitigation of Culture Heritage Sites מוכנות והיערכות לסיכוני רעידות אדמה באתרי מורשת תרבות Israel, Jerusalem, 19-20 January 2014

ii. <u>CANSIGNORIO STONE TOMB</u>: SHM TO VALIDATE THE EFFECTIVENESS OF INTERVENTIONS

GEOMETRIC AND MATERIAL FEATURES

- Placed in the monumental area of S. Maria Antica;
- Funerary monument of 'Scaligeri' family, in the Gothic style;
- Hexagonal plan, full of sculptures, spired tabernacles and decorations; equestrian sculpture on the top
- Soft limestone (gallina), red Verona marble, marble of Candoglia.

HISTORICAL NOTES - PAST INTERVENTIONS

- 1374-1376: Construction following the drawings of Bonino da Campione;
- from1676: periodical restoration works;
- 1915-19, 1940-45: anti-aircraft protections;
- 2006-08: important consolidation interventions

Seismic Risk Preparedness and Mitigation of Culture Heritage Sites מוכנות והיערכות לסיכוני רעידות אדמה באתרי מורשת תרבות Israel, Jerusalem, 19-20 January 2014

CANSIGNORIO STONE TOME : STRENGTHENING INTERVENTION (2006-2008)

LOCAL AND GLOBAL INTERVENTIONS

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

CANSIGNORIO STONE TOMB : PRELIMINARY INSPECTIONS

a. OPERATIONAL MODAL ANALYSIS (OMA):

- Definition of the optimal layout of the dynamic system
- Identification of the dynamic behaviour of the monument
- Model updating
- SF 100 Hz; 131'072 points; record lenght: 21'51" sec
- System identification: decimation; segment length 2048 points, 66.67% overlap; selected method: FDD

MODE	FDD [Hz]	Comment			
1	3,17	1 st bending NS			
2	3,22	1 st bending EO			
3	5,91	1 st torsional			
4	12,60	2 nd bending NS			
5	12,89	2 nd bending EO			
6	19,43	2 nd torsional			

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

CANSIGNORIO STONE TOMB: THE MONITORING SYSTEM

NEEDS OF MONITORING:

- Application of SHM before, during and after interventions' execution
- Evaluate on-site the effectiveness of performed strengthening interventions
- Assessment of possible upgrading solutions
- Application of an incremental approach to inteventions

DYNAMIC MONITORING 4 SINGLE-AXIS ACCELEROMETERS

Sensitivity: 1019.4 mV/(m/s²) Frequency range (\pm 10 %): 0.1 \div 2000 Hz Resolution(da 10,000 Hz): 0.00008 m/s² Operating temperature : -45 \div 82 °C

STATIC MONITORING 2 DISPLACEMENT TRANSDUCERS

Voltage: 0÷10 V Measurement range: 10 cm Hysteresis: < 0.01 mm Operating temperature:-30÷100 °C

ENVIRONMENTAL MONITORING 1 TEMPERATURE/RH

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

CANSIGNORIO STONE TOMB: NATURAL FREQUENCIES VARIATION (7

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

CANSIGNORIO STONE TOMB: CRACKS OPENING (7 YEARS)

PZ 01

Presence of an active deterioration/dama ging process

PZ 02

Reversible deformations of the crack strictly related to seasonal thermal cycles.

No active damage

Seismic Risk Preparedness and Mitigation of Culture Heritage Sites מוכנות והיערכות לסיכוני רעידות אדמה באתרי מורשת תרבות Israel, Jerusalem. 19-20 January 2014

iii. <u>L'Aquila case studies</u>: SHM for post-earthquake controls

L'AQUILA SHM NETWORK (UNIVERSITY OF PADOVA & NAGOYA UNIVERSITY - JAPAN)

NEEDS OF MONITORING:

- Evaluate quantitatively the progression of the damage pattern
- Design effective and urgent provisional interventions to prevent further collapses
- Define an early warning procedure for the safety of the workers employed in the strengthening interventions
- Schedule the execution of definitive interventions (heavy reconstructions)

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

CIVIC TOWER

The Civic Tower is located in the heart of the historical city center of l'Aquila and it's part of the complex of the l'Aquila City Hall composed by two bodies: the Margherita Palace and the Tower.

GEOMETRIC AND MATERIAL FEATURES

- 6,27m long, 6,42m wide, 42m high
- Covering: calcareous stone blocks
- Presence of some orders of bricks at the second level
- Presence of ancient tiles

HISTORICAL NOTES - PAST INTERVENTIONS

- XIII sec.: first construction of the tower, originally coinceived as an isolated element
- 1294: construction of 'Margherita' palace
- 1349, 1461 and 1703: strong earthquakes induced several damages/collapses

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע"ד

CIVIC TOWER: 6 APRIL 2009 EARTHQUAKE

EARTHQUAKE-INDUCED DAMAGES:

- West façade: vertical cracks
- East and South façades: cracks at the bottom of the tower due to stress concentrations
- South façade: failure of an existing tie
- Detachment of the tower from the Palace

PROVISIONAL INTERVENTIONS:

- Confinement system of the tower (steel beams, ties and timber frames)
- Improvement of the tower-palace connection
- Propping system of the palace's perimeter walls to prevent out-of-plane overturning

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

<u>CIVIC TOWER</u>: THE MONITORING SYSTEM

STATIC SYSTEM

- Displacement transducer
- Thermo couples
- Strain gauges
- Inclinometer

DYNAMIC SYSTEM

DYNAMIC MONITORING 8 SINGLE-AXIS ACCELEROMETERS

STATIC MONITORING

- 5 DISPLACEMENT TRANSDUCERS
- 6 STRAIN GAUGES
- 1 INCLINOMETER

ENVIRONMENTAL MONITORING6 THERMO COUPLES

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

<u>CIVIC TOWER:</u> STATIC MONITORING RESULTS

During the first 1,5 years of monitoring the crack pattern of the tower was kept rather stable

Starting from February 2012 the equilibrium conditions of the tower underwent a significant change due to a slight rotation/displacement of the tower toward the palace

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

<u>CIVIC TOWER:</u> DAMAGE DETECTION

April 1 Julii Oct 11 Jan 12 April 2 Julii 2 Primarian Tamponiana

- Monitoring period: 22/07/2010 09/01/2013 → 2,5 years
- Construction of ARX models on the first 5 natural frequencies

STATISTICAL RESULTS OF MONITORING

Mode	f _{max} [Hz]	f _{min} [Hz]	f _{mean} [Hz]	f _{change} [%]	f _{std} [Hz]	<i>fcv</i> [%]
1	1,701	1,533	1,604	10,92	0,047	2,93
2	1,752	1,531	1,642	14,44	0,060	3,64
3	3,410	2,988	3,150	14,09	0,076	2,42
4	3,849	3,377	3,558	14,00	0,118	3,32
5	5,291	4,391	4,692	20,48	0,173	3,69
6	5,989	5,328	5,566	12,41	0,152	2,73
7	7,251	5,786	6,305	25,32	0,232	3,68

CORRELATION ANALYSIS

	CORRELATION COEFFICIENTS									
	f1 f2 f3 f4 f5 f6									
<i>T</i> 1	0,23	0,20	0,50	0,84	0,41	0,13	0,14			
T2	0,15	0,27	0,49	0,81	0,48	0,10	0,14			
<i>T</i> 3	0,05	0,35	0,44	0,76	0,54	0,04	0,14			
<i>T</i> 4	0,04	0,35	0,44	0,75	0,54	0,04	0,13			
<i>T</i> 5	0,03	0,36	0,43	0,75	0,55	0,04	0,13			
<i>T</i> 6	0,09	0,33	0,46	0,78	0,53	0,05	0,15			

ARX MODELS SELCTION BASED ON QUALITY CRITERIA

	Mada				ARX mod	dels			St	atic ı	atic regression models				
	woue	n _a	n_b	n_k	λο	FPE	R^2	n _a	n_b	n_k	λο	FPE	R^2		
	1	7	10	0	0,0001	0,0001	0,52	0	1	0	0,0003	0,0003	0,23		
	2	6	10	0	0,0001	0,0001	0,38	0	1	0	0,0002	0,0002	0,36		
_	3	5	9	0	0,0004	0,0004	0,54	0	1	0	0,0018	0,0018	0,50		
_	4	9	10	0	0,0004	0,0005	0,85	0	1	0	0,0016	0,0016	0,84		
	5	0	10	0	0,0051	0,0054	0,54	0	1	0	0,0055	0,0056	0,55		

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

RESIDUAL ANALYSIS AND DAMAGE DETECTION

MODE 1: 1st bending E-W

MODE 3: 2nd bending N-S

CONCLUSIONS

Until Feb 2012 → damage is stable since the residuals are always included within confidence intervals

MODE 2: 1st bending N-S

- From Feb 2012 → the equilibrium condition of the tower changed due to a displacement of the tower
- It was possible to detect damage/modification of the structural layout demonstrated by an increment of frequencies

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

RESIDUAL ANALYSIS AND DAMAGE DETECTION

MODE 5: 1st torsion

CONCLUSIONS

- Until Feb 2012 \rightarrow damage is stable since the residuals are always included within confidence intervals
- From Feb 2012 → the equilibrium condition of the tower changed due to a displacement of the tower
- It was possible to detect damage/modification of the structural layout demonstrated by an increment of frequencies

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

THE TOWER OF DAVID

The Tower of David is a historical and archeological asset located near the Jaffa Gate entrance to the Old City of Jerusalem. Built to strengthen a strategically weak point in the Old City's defenses, the citadel that stands today has ancient foundations and was constructed during the 2nd century BC and subsequently destroyed and rebuilt by, in succession, the Christian, Muslim, Mamluk, and Ottoman conquerors of Jerusalem. It contains important archaeological finds dating back 2,700 years

The citadel compound includes archeological findings attesting to Jerusalem's long and eventful history: remains of a quarry from the First Temple period; a segment of the wall surrounding Hasmonean Jerusalem (the first wall); remains of monumental steps, probably from Herod's palace which was located nerby; remains of a fortress that stood in this location during the rule of the Ummayid dynasty (7th and 8th century CE) and more

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשעייד

MASTERPLAN

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע"ד

MASTERPLAN

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

GEOMETRIC SURVEY

LEVEL 1 (+5 m)

SOUTH ELEVATION

EAST ELEVATION

LEVEL 2 (+10 m)

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

GEOMETRIC SURVEY

LEVEL 3 (+17 m)

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע"ד

NEEDS OF MONITORING

- Increase the knowledge on the structural behavior using SHM to assess strengthening needs and avoid the execution of unnecessary interventions
- Control the structural response to different external actions, considering the relevant use/expoloitation of the monument
- SHM in the framework of a maintenance/conservation plan of the Tower of David to guarantee appropriate safety conditions
- Assessment and minimization of the seismic risk;
 Calibration of reference behavioural models
- Acquisition of vibration characteristics of the monument and control of the surveyed crack pattern under operational conditions and in case of exceptional events

DESIGN AND INSTALLATION OF A STATIC AND DYNAMIC STRUCTURAL HEALTH MONITORING SYSTEM

NOVEMBER 2013

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשעייד

PRELIMINARY INSPECTIONS

VISUAL INSPECTIONS - CRACK PATTERN SURVEY:

- Choose the optimal position of static sensors
- Identify principal damage and crack patterns
- Control local cracks or entire macroelements

MAIN STRUCTURAL PROBLEMS:

- Severe damages and cracks on the top of the minaret
- Cracks at the basement of the tower

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

PRELIMINARY INSPECTIONS

VISUAL INSPECTIONS - CRACK PATTERN SURVEY:

- Choose the optimal position of static sensors
- Identify principal damage and crack patterns
- Control local cracks or entire macroelements

MAIN STRUCTURAL PROBLEMS:

- Severe damages and cracks on the top of the minaret
- Cracks at the basement of the tower

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

MONITROING SYSTEM

DYNAMIC

8 Single-axis piezoelectric accelerometers

Sensitivity: 1019.4 mV/(m/s²) Frequency range (\pm 10 %): 0.1 \div 2000 Hz Resolution (da 10,000 Hz): 0.00008 m/s² Working temperature: -45 \div 82 °C

STATIC

6 Displacement transducers

Voltage: 0÷10 V Range of measurement: 10 cm Hysteresis: < 0.01 mm Working temerature: -30÷100 °C

ENVIRONMENTAL

1 Integrated sensor temperature and relative humidity

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

 $\Delta \Delta$

A3

A5

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

DYNAMIC SYSTEM

Dynamic data are being collected both at fixed time intervals ("long" acquisition, corresponding to 131'072 points, or to 21'51" of record at a sampling frequency of 100 SPS, each 12 hours) to allow successive dynamic identification of the structure with different environmental conditions, and on a trigger basis (shorter records, 3'35" at a sampling frequency of 100 SPS), when the signal, on one of the acceleration channels, gets over the predefined threshold

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

AUTOMATED DATA PROCESSING

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

MONITORING RESULTS

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

MONITORING RESULTS

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

MONITORING RESULTS: OPERATIONAL MODAL ANALYSIS

- Identification of the dynamic behaviour of the Tower
- Exploitation of the results for model updating
- Comparison of results using different OMA techniques
- SF 100 Hz; 131'072 points; record lenght: 21'51" sec
- System identification: decimation; segment length 2048 points, 66.67% overlap; selected methods: FDD and EFDD

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע״ד

MONITORING RESULTS: OMA

y

MODE	FDD	EFDD		MAC	Commont
	f [Hz]	<i>f</i> [Hz]	ξ [%]	WAC	Comment
1	3,42	3,41	0,97	0,99	1st bending X
2	3,90	3,91	0,92	1	1st bending Y
3	5,13	5,09	1,72	0,99	2nd bending X
4	6,35	6,36	1,47	0,98	2nd bending Y
5	6,93	6,99	1,63	0,99	3rd bending Y
6	8,64	8,73	2,48	0,99	4th bending Y
7	11,04	11,07	1,07	0,98	1st torsion
8	14,89	14,88	1,09	0,98	5th bending X
9	15,72	15,7	0,85	0,99	6th bending Y

Singular values decomposition of the power spectral density matrix

Israel, Jerusalem. 19-20 January 2014 ירושלים. יח'-יט' בשבט, תשע"ד

THANK YOU FOR YOUR KIND ATTENTION!

Speaker: Dr. Eng. Filippo Lorenzoni

INGEGNERIA CIVILE, EDILE E AMBIENTALE CIVIL, ARCHITECTURAL AND ENVIRONMENTAL ENGINEERING

